Числа Фибоначчи

ТОП-2 лучших брокера бинарных опционов в 2020 году:
  • БИНАРИУМ
    БИНАРИУМ

    № 1 в рейтинге! Гарантия честности, высокий доход! Хороший выбор для начинающих. Бонус за регистрацию счета!

  • ФИНМАКС
    ФИНМАКС

    Разнообразные торговые инструменты для опытных трейдеров!

Числа Фибоначчи

Во вселенной еще много неразгаданных тайн, некоторые из которых ученые уже смогли определить и описать.

Первая тысяча знаков значения Φ

1,6180339887 4989484820 4586834365 6381177203 0917980576 2862135448 6227052604 6281890244 9707207204 1893911374 8475408807 5386891752 1266338622 2353693179 3180060766 7263544333 8908659593 9582905638 3226613199 2829026788 0675208766 8925017116 9620703222 1043216269 5486262963 1361443814 9758701220 3408058879 5445474924 6185695364 8644492410 4432077134 4947049565 8467885098 7433944221 2544877066 4780915884 6074998871 2400765217 0575179788 3416625624 9407589069 7040002812 1042762177 1117778053 1531714101 1704666599 1466979873 1761356006 7087480710 1317952368 9427521948 4353056783 0022878569 9782977834 7845878228 9110976250 0302696156 1700250464 3382437764 8610283831 2683303724 2926752631 1653392473 1671112115 8818638513 3162038400 5222165791 2866752946 5490681131 7159934323 5973494985 0904094762 1322298101 7261070596 1164562990 9816290555 2085247903 5240602020 2799747175 3427775927 7862561943 2082750513 1218156285 5122248093 9471234145 1702237358 0577278616 0086883829 5230459264 7878017889 9219902707 7690389532 1968198615 1437803149 9741106926 0886742962 2675756052 3172777520 3536139362

Числа Фибоначчи и золотое сечение составляют основу разгадки окружающего мира, построения его формы и оптимального зрительного восприятия человеком, с помощью которых он может ощущать красоту и гармонию.

Принцип определения размеров золотого сечения лежит в основе совершенства целого мира и его частей в своей структуре и функциях, его проявление можно видеть в природе, искусстве и технике. Учение о золотой пропорции было заложено в результате исследований древними учеными природы чисел.

Свидетельства использования древними мыслителями золотой пропорции приведены в книге Эвклида «Начала», написанной еще в 3 в. до н.э., который применял это правило для построения правильных 5-угольников. У пифагорейцев эта фигура считается священной, поскольку является одновременно симметричной и асимметричной. Пентаграмма символизировала жизнь и здоровье.

Числа Фибоначчи

Знаменитая книга Liber abaci математика из Италии Леонардо Пизанского, который в последующем стал известен, как Фибоначчи, увидела свет в 1202 г. В ней ученый впервые приводит закономерность чисел, в ряду которых каждое число является суммой 2-х предыдущих цифр. Последовательность чисел Фибоначчи заключается в следующем:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 и т.д.

Также ученый привел ряд закономерностей:

Рейтинг надежных брокеров бинарных опционов с русским языком:
  • БИНАРИУМ
    БИНАРИУМ

    № 1 в рейтинге! Гарантия честности, высокий доход! Хороший выбор для начинающих. Бонус за регистрацию счета!

  • ФИНМАКС
    ФИНМАКС

    Разнообразные торговые инструменты для опытных трейдеров!

Любое число из ряда, разделенное на последующее, будет равно значению, которое стремится к 0,618. Причем первые числа Фибоначчи не дают такого числа, но по мере продвижения от начала последовательности это соотношение будет все более точным.

Если же поделить число из ряда на предыдущее, то результат устремится к 1,618.

Одно число, поделенное на следующее через одно, покажет значение, стремящееся к 0,382.

Применение связи и закономерностей золотого сечения, числа Фибоначчи (0,618) можно найти не только в математике, но и в природе, в истории, в архитектуре и строительстве и во многих других науках.

Для практических целей ограничиваются приблизительным значением Φ = 1,618 или Φ = 1,62. В процентном округлённом значении золотое сечение — это деление какой-либо величины в отношении 62 % и 38 %.

Исторически изначально золотым сечением именовалось деление отрезка АВ точкой С на две части (меньший отрезок АС и больший отрезок ВС), чтобы для длин отрезков было верно AC/BC = BC/AВ. Говоря простыми словами, золотым сечением отрезок рассечён на две неравные части так, что меньшая часть относится к большей, как большая ко всему отрезку. Позже это понятие было распространено на произвольные величины.

Число Φ называется также золотым числом.

Золотое сечение имеет множество замечательных свойств, но, кроме того, ему приписывают и многие вымышленные свойства.

Теперь подробности:

Определение ЗС — это деление отрезка на две части в таком соотношении, при котором большая часть относится к меньшей, как их сумма (весь отрезок) к большей.

То есть, если мы примем весь отрезок c за 1, то отрезок a будет равен 0,618, отрезок b — 0,382. Таким образом, если взять строение, например, храм, построенный по принципу ЗС, то при его высоте скажем 10 метров, высота барабана с куполом будут равны 3,82 см, а высота основания строения будет 6, 18 см. (понятно, что цифры взяты ровными для наглядности)

Далее можно рассчитать высоту двери, окон, креста. И везде будет просматриваться принцип ЗС.

А какова связь между ЗС и числами Фибоначчи?

Числа последовательности Фибоначчи это:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597…

Закономерность чисел в том, что каждое последующее число равно сумме двух предыдущих чисел.
0 + 1 = 1;
1 + 1 = 2;
2 + 3 = 5;
3 + 5 = 8;
5 + 8 = 13;
8 + 13 = 21 и т.д.,

Секрет успеха:  Прогноз по бинарным опционам на неделю с 9 по 13 февраля.

а отношение смежных чисел приближается к отношению ЗС.
Так, 21 : 34 = 0,617, а 34 : 55 = 0,618.

То есть в основе ЗС лежат числа последовательности Фибоначчи.

Считается, что термин «Золотое сечение» ввел Леонардо Да Винчи, который говорил, «пусть никто, не будучи математиком, не дерзнет читать мои труды” и показывал пропорции человеческого тела на своём знаменитом рисунке «Витрувианский человек». “Если мы человеческую фигуру – самое совершенное творение Вселенной – перевяжем поясом и отмерим потом расстояние от пояса до ступней, то эта величина будет относиться к расстоянию от того же пояса до макушки, как весь рост человека к длине от пояса до ступней”.

Ряд чисел Фибоначчи наглядно моделируется (материализуется) в форме спирали.

А в природе спираль ЗС выглядит вот так:

При этом, спираль наблюдается повсеместно (в природе и не только):

— Семена в большинстве растений расположены по спирали
— Паук плетет паутину по спирали
— Спиралью закручивается ураган
— Испуганное стадо северных оленей разбегается по спирали.
— Молекула ДНK закручена двойной спиралью. Молекулу ДНК составляют две вертикально переплетенные спирали длиной 34 ангстрема и шириной 21 ангстрема. Числа 21 и 34 следуют друг за другом в последовательности Фибоначчи.
— Эмбрион развивается в форме спирали
— Спираль «улитки во внутреннем ухе»
— Вода уходит в слив по спирали
— Спиральная динамика показывает развитие личности человека и его ценностей по спирали.
— Ну и конечно, сама Галактика имеет форму спирали

Таким образом можно утверждать, что сама природа построена по принципу Золотого Сечения, оттого эта пропорция гармоничнее воспринимается человеческим глазом. Она не требует «исправления» или дополнения получаемой картинки мира.

Фильм. Число Бога. Неопровержимое доказательство Бога; The number of God. The incontrovertible proof of God.

Золотые пропорции в строении молекулы ДНК

Все сведения о физиологических особенностях живых существ хранятся в микроскопической молекуле ДНК, строение которой также содержит в себе закон золотой пропорции. Молекула ДНК состоит из двух вертикально переплетенных между собой спиралей. Длина каждой из этих спиралей составляет 34 ангстрема, ширина 21 ангстрема. (1 ангстрем — одна стомиллионная доля сантиметра).

21 и 34 — это цифры, следующие друг за другом в последовательности чисел Фибоначчи, то есть соотношение длины и ширины логарифмической спирали молекулы ДНК несет в себе формулу золотого сечения 1:1,618

Золотое сечение в строении микромиров

Геометрические фигуры не ограничиваются только лишь треугольником, квадратом, пяти- или шестиугольником. Если соединить эти фигуры различным образом между собой, то мы получим новые трехмерные геометрические фигуры. Примерами этому служат такие фигуры как куб или пирамида. Однако кроме них существуют также другие трехмерные фигуры, с которыми нам не приходилось встречаться в повседневной жизни, и названия которых мы слышим, возможно, впервые. Среди таких трехмерных фигур можно назвать тетраэдр (правильная четырехсторонняя фигура), октаэдр, додекаэдр, икосаэдр и т.п. Додекаэдр состоит из 13-ти пятиугольников, икосаэдр из 20-и треугольников. Математики отмечают, что эти фигуры математически очень легко трансформируются, и трансформация их происходит в соответствии с формулой логарифмической спирали золотого сечения.

В микромире трехмерные логарифмические формы, построенные по золотым пропорциям, распространены повсеместно. К примеру, многие вирусы имеют трехмерную геометрическую форму икосаэдра. Пожалуй, самый известный из таких вирусов — вирус Adeno. Белковая оболочка вируса Адено формируется из 252 единиц белковых клеток, расположенных в определенной последовательности. В каждом углу икосаэдра расположены по 12 единиц белковых клеток в форме пятиугольной призмы и из этих углов простираются шипообразные структуры.

Впервые золотое сечение в строении вирусов обнаружили в 1950-хх гг. ученые из Лондонского Биркбекского Колледжа А.Клуг и Д.Каспар. 13 Первым логарифмическую форму явил в себе вирус Polyo. Форма этого вируса оказалась аналогичной с формой вируса Rhino 14.

Возникает вопрос, каким образом вирусы образуют столь сложные трехмерные формы, устройство которых содержит в себе золотое сечение, которые даже нашим человеческим умом сконструировать довольно сложно? Первооткрыватель этих форм вирусов, вирусолог А.Клуг дает такой комментарий:

«Доктор Каспар и я показали, что для сферической оболочки вируса самой оптимальной формой является симметрия типа формы икосаэдра. Такой порядок сводит к минимуму число связующих элементов… Большая часть геодезических полусферических кубов Букминстера Фуллера построены по аналогичному геометрическому принципу. 14 Монтаж таких кубов требует чрезвычайно точной и подробной схемы-разъяснения. Тогда как бессознательные вирусы сами сооружают себе столь сложную оболочку из эластичных, гибких белковых клеточных единиц.»

Комментарий Клюга еще раз напоминает о предельно очевидной истине: в строении даже микроскопического организма, который ученые классифицируют как «самую примитивную форму жизни», в данном случае в вирусе, присутствует четкий замысел и осуществлен разумный проект 16. Этот проект несопоставим по своему совершенству и точности исполнения с самыми передовыми архитектурными проектами, созданными людьми. К примеру проектами, созданными гениальным архитектором Букминстером Фуллером.

Секрет успеха:  Тактика трейдинга ЕМА + RSI от трейдера портала Bopt.org

Трехмерные модели додекаэдра и икосаэдра присутствуют также и в строении скелетов одноклеточных морских микроорганизмов радиолярий (лучевиков), скелет которых создан из кремнезёма.

Радиолярии формируют свое тело весьма изысканной, необычной красоты. Форма их составляет правильный додекаэдр. Причем из каждого его угла прорастает псевдоудлиннение-конечность и иные необычные формы-наросты.

В качестве примеров микроорганизмов, воплощающих в своем строении эти трехмерные геометрические фигуры, приведем Circigonia Icosahedra с икасаэдральным строением скелета и Circorhegma Dodecahedra с додекаэдральным строением скелета, причем размеры этих микроорганизмов не достигают и одного миллиметра.

Золотое сечение в физике

Последовательность чисел Фибоначчи и формула золотого сечения непосредственным образом затрагивает и сферу физики и физических законов:

«Представим две соприкоснувшиеся между собой стеклянные пластины. Теперь направим на них луч света. Часть луча пройдет сквозь стекло, другая часть поглотиться, оставшаяся же часть отразится от стекла. Произойдет явление «множественного отражения». Количество путей, которые проходит луч внутри стекла, прежде чем пройти и выйди сквозь стекло, зависит от количества лучей, который не прошли сквозь стекло, а подверглись отражению. Если подсчитать количество лучей, отразившихся от стекла и прошедших сквозь него, то опять же мы получим последовательность чисел Фибоначчи в соотношении 1:1.618.»

Строение всех встречающихся в природе живых организмов и неживых объектов, не имеющих никакой связи и подобия между собой, спланировано по определенной математической формуле. Это является самым ярким доказательством их осознанной сотворенности согласно некоему проекту, замыслу. Формула золотого сечения и золотые пропорции очень хорошо известны всем людям искусства, ибо это главные правила эстетики. Любое произведение искусства, спроектированное в точном соответствии с пропорциями золотого сечения, являет собой совершенную эстетическую форму.

Числа Фибоначчи: циклом и рекурсией

Числа Фибоначчи – это ряд чисел, в котором каждое следующее число равно сумме двух предыдущих: 1, 1, 2, 3, 5, 8, 13, . . Иногда ряд начинают с нуля: 0, 1, 1, 2, 3, 5, . . В данном случае мы будем придерживаться первого варианта.

Формула:

Пример вычисления:

Вычисление n-го числа ряда Фибоначчи с помощью цикла while

  1. Присвоить переменным fib1 и fib2 значения двух первых элементов ряда, то есть присвоить переменным единицы.
  2. Запросить у пользователя номер элемента, значение которого он хочет получить. Присвоить номер переменной n .
  3. Выполнять следующие действия n — 2 раз, так как первые два элемента уже учтены:
    1. Сложить fib1 и fib2 , присвоив результат переменной для временного хранения данных, например, fib_sum .
    2. Переменной fib1 присвоить значение fib2 .
    3. Переменной fib2 присвоить значение fib_sum .
  4. Вывести на экран значение fib2 .

Примечание. Если пользователь вводит 1 или 2, тело цикла ни разу не выполняется, на экран выводится исходное значение fib2 .

Компактный вариант кода:

Вывод чисел Фибоначчи циклом for

В данном случае выводится не только значение искомого элемента ряда Фибоначчи, но и все числа до него включительно. Для этого вывод значения fib2 помещен в цикл.

Рекурсивное вычисление n-го числа ряда Фибоначчи

  1. Если n = 1 или n = 2, вернуть в вызывающую ветку единицу, так как первый и второй элементы ряда Фибоначчи равны единице.
  2. Во всех остальных случаях вызвать эту же функцию с аргументами n — 1 и n — 2. Результат двух вызовов сложить и вернуть в вызывающую ветку программы.

Допустим, n = 4. Тогда произойдет рекурсивный вызов fibonacci(3) и fibonacci(2). Второй вернет единицу, а первый приведет к еще двум вызовам функции: fibonacci(2) и fibonacci(1). Оба вызова вернут единицу, в сумме будет два. Таким образом, вызов fibonacci(3) возвращает число 2, которое суммируется с числом 1 от вызова fibonacci(2). Результат 3 возвращается в основную ветку программы. Четвертый элемент ряда Фибоначчи равен трем: 1 1 2 3.

Урок №107. Рекурсия и Числа Фибоначчи

Обновл. 31 Дек 2020 |

В этом уроке мы рассмотрим, что такое рекурсия в C++, зачем её использовать, а также рассмотрим последовательность Фибоначчи и факториал целого числа.

Рекурсия

Рекурсивная функция (или просто «рекурсия») в C++ — это функция, которая вызывает саму себя. Например:

Секрет успеха:  Брокер Smartex - отзывы трейдеров и клиентов

При вызове countOut(4) на экран выведется push 4 , а затем вызовется countOut(3). countOut(3) выведет push 3 и вызовет countOut(2). Последовательность вызова countOut(n) других функций countOut(n-1) повторяется бесконечное количество раз (аналог бесконечного цикла). Попробуйте запустить у себя.

В уроке №105 мы узнали, что при каждом вызове функции, определённые данные помещаются в стек вызовов. Поскольку функция countOut() никогда ничего не возвращает (она просто снова вызывает countOut()), то данные этой функции никогда не вытягиваются из стека! Следовательно, в какой-то момент память стека закончится и произойдёт переполнение стека.

Условие завершения рекурсии

Рекурсивные вызовы функций работают так же, как и обычные вызовы функций. Однако, программа выше иллюстрирует наиболее важное отличие простых функций от рекурсивных: вы должны указать условие завершения рекурсии, в противном случае функция будет выполняться «бесконечно» (фактически, до тех пор, пока не исчерпается память в стеке вызовов). Условие завершения рекурсии — это условие, которое, при его выполнении, остановит вызов рекурсивной функции саму себя.

В этом условии обычно используется оператор if. Вот пример функции выше, но уже с условием завершения рекурсии (и ещё с одним дополнительным выводом текста):

Когда мы запустим эту программу, то countOut() начнёт выводить:

push 4
push 3
push 2
push 1

Если сейчас посмотреть на стек вызовов, то увидим следующее:

countOut(1)
countOut(2)
countOut(3)
countOut(4)
main()

Из-за условия завершения, countOut(1) не вызовет countOut(0): условие if не выполнится, и поэтому выведется pop 1 и countOut(1) завершит своё выполнение. На этом этапе countOut(1) вытягивается из стека, и управление возвращается к countOut(2). countOut(2) возобновляет выполнение в точке после вызова countOut(1), и поэтому выведется pop 2 , а затем countOut(2) завершится. Рекурсивные вызовы функций countOut постепенно вытягиваются из стека до тех пор, пока не будут удалены все экземпляры countOut.

Таким образом, результат выполнения программы выше:

push 4
push 3
push 2
push 1
pop 1
pop 2
pop 3
pop 4

Стоит отметить, что push выводится в порядке убывания, а pop — в порядке возрастания. Дело в том, что push выводится до вызова рекурсивной функции, а pop выполняется (выводится) после вызова рекурсивной функции, когда все экземпляры countOut вытягиваются из стека (что происходит в обратном порядке, в котором эти экземпляры были введены).

Теперь, когда мы обсудили основной механизм вызова рекурсивных функций, давайте взглянем на несколько другой тип рекурсии, который более распространён:

Рассмотреть рекурсию с первого взгляда на код не так уж и легко. Лучшим вариантом будет посмотреть, что произойдёт при вызове рекурсивной функции с определённым значением. Например, посмотрим, что произойдёт при вызове функции выше с value = 4 :

sumCount(4). 4 > 1, поэтому возвращается sumCount(3) + 4
sumCount(3). 3 > 1, поэтому возвращается sumCount(2) + 3
sumCount(2). 2 > 1, поэтому возвращается sumCount(1) + 2
sumCount(1). 1 = 1, поэтому возвращается 1. Это условие завершения рекурсии

Теперь посмотрим на стек вызовов:

sumCount(1) возвращает 1
sumCount(2) возвращает sumCount(1) + 2, т.е. 1 + 2 = 3
sumCount(3) возвращает sumCount(2) + 3, т.е. 3 + 3 = 6
sumCount(4) возвращает sumCount(3) + 4, т.е. 6 + 4 = 10

На этом этапе уже легче увидеть, что мы просто добавляем числа между 1 и значением, которое предоставил caller. На практике рекомендуется указывать комментарии возле рекурсивных функций, дабы облегчить жизнь не только себе, но, возможно, и другим людям, которые будут смотреть ваш код.

Рекурсивные алгоритмы

Рекурсивные функции обычно решают проблему, сначала найдя решение для подмножеств проблемы (рекурсивно), а затем модифицируя это «подрешение», дабы добраться уже до верного решения. В примере выше алгоритм sumCount(value) сначала решает sumCount(value-1), а затем добавляет значение value , чтобы найти решение для sumCount(value).

Во многих рекурсивных алгоритмах некоторые данные ввода производят предсказуемые данные вывода. Например, sumCount(1) имеет предсказуемый вывод 1 (вы можете легко это вычислить и проверить самостоятельно). Случай, когда алгоритм при определённых данных ввода производит предсказуемые данные вывода, называется базовым случаем. Базовые случаи работают как условия для завершения выполнения алгоритма. Их часто можно идентифицировать, рассматривая результаты вывода для следующих значений ввода: 0 , 1, « » или null .

Числа Фибоначчи

Одним из наиболее известных математических рекурсивных алгоритмов является последовательность Фибоначчи. Последовательность Фибоначчи можно увидеть даже в природе: ветвление деревьев, спираль раковин, плоды ананаса, разворачивающийся папоротник и т.д.

Спираль Фибоначчи выглядит следующим образом:

Каждое из чисел Фибоначчи — это длина горизонтальной стороны квадрата, в которой находится данное число. Математически числа Фибоначчи определяются следующим образом:

F(n) = 0, если n = 0
1, если n = 1
f(n-1) + f(n-2), если n > 1

Следовательно, довольно просто написать рекурсивную функцию для вычисления n-го числа Фибоначчи:

Брокеры БО, дающие бонусы за открытие счета:
  • БИНАРИУМ
    БИНАРИУМ

    № 1 в рейтинге! Гарантия честности, высокий доход! Хороший выбор для начинающих. Бонус за регистрацию счета!

  • ФИНМАКС
    ФИНМАКС

    Разнообразные торговые инструменты для опытных трейдеров!

Добавить комментарий